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Ordinary differential equations (ODEs) are widespread in many natural sciences including 
chemistry, ecology, and systems biology, and in disciplines such as control theory and 
electrical engineering. Building on the celebrated molecules-as-processes paradigm, they 
have become increasingly popular in computer science, with high-level languages and 
formal methods such as Petri nets, process algebra, and rule-based systems that are 
interpreted as ODEs.
We consider the problem of comparing and minimizing ODEs automatically. Influenced by 
traditional approaches in the theory of programming, we propose differential equivalence 
relations. We study them for a basic intermediate language, for which we have decidability 
results, that can be targeted by a class of high-level specifications. An ODE implicitly 
represents an uncountable state space, hence reasoning techniques cannot be borrowed 
from established domains such as probabilistic programs with finite-state Markov chain 
semantics. We provide novel symbolic procedures to check an equivalence and compute 
the largest one via partition refinement algorithms that use satisfiability modulo theories.
We illustrate the generality of our framework by showing that differential equivalences 
include (i) well-known notions for the minimization of continuous-time Markov chains 
(lumpability), (ii) bisimulations for chemical reaction networks recently proposed by 
Cardelli et al., and (iii) behavioral relations for process algebra with ODE semantics. Using 
ERODE, the tool that implements our techniques, we are able to detect equivalences in 
biochemical models from the literature that cannot be reduced using competing automatic 
techniques.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Ordinary differential equations (ODEs) are a widespread mathematical model to describe the time-course evolution of 
systems that can be characterized by continuously varying quantities. Classical examples are concentrations of species in 
chemical reactions and in biological processes, pressure and temperature in a plant, and voltage and current in an elec-
trical circuit. Much more recently there has been an increasing attention to quantitative models of computation based on 
ODEs, for example to use formal languages to describe biochemical models [73,36,11,16,20,69,31,79] or as a deterministic 
approximation for languages with stochastic semantics [31,55,91].

* Corresponding author.
E-mail addresses: luca.a.cardelli@gmail.com (L. Cardelli), mirco.tribastone@imtlucca.it (M. Tribastone), max.tschaikowski@tuwien.ac.at (M. Tschaikowski), 

anvan@dtu.dk (A. Vandin).
https://doi.org/10.1016/j.tcs.2019.03.018
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.03.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:luca.a.cardelli@gmail.com
mailto:mirco.tribastone@imtlucca.it
mailto:max.tschaikowski@tuwien.ac.at
mailto:anvan@dtu.dk
https://doi.org/10.1016/j.tcs.2019.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.03.018&domain=pdf


L. Cardelli et al. / Theoretical Computer Science 777 (2019) 132–154 133
In this paper we consider the fundamental problem of automatically comparing and minimizing programs with ODE 
semantics. From a mathematical viewpoint, the models of our interest are systems of coupled equations in n variables, 
x = (x1, . . . , xn), where

ẋi = f i(x), i = 1, . . . ,n,

and f i is the drift, a real valued function giving the derivative with respect to time of variable xi when the system’s state 
is x.

IDOL We study a basic formalism called IDOL— Intermediate Drift Oriented Language. It essentially gives a syntax for the 
drifts, covering a class of nonlinear ODEs for which the reasoning is decidable, hence amenable to automatic treatment. 
Although not every ODE system can be directly written in IDOL (e.g., ODEs with trigonometric functions or exponentials), it 
covers a wide range of ODE models including:

• Linear ODE systems. This is a very important class of models in many disciplines including control theory and electrical 
engineering. Here we remark that a continuous-time Markov chain (CTMC), a very popular stochastic semantics for 
higher-level quantitative languages (see [10] and references therein) can also be directly seen as a linear ODE system 
through its Kolmogorov equations (also called the master equation). These equations give the probability of being in each 
state of the chain at any point in time [75].

• Chemical reaction networks. Chemical reaction networks (CRNs) express interactions between chemical species or 
molecular compounds. IDOL allows the specification of relevant (nonlinear) kinetics such as the well-known law of 
mass action, where the reaction rate is proportional to the product of the concentrations of the reagents; and the Hill 
kinetics, which involves rational expressions of polynomials in the species variables [97].

• Quantitative models of computing systems. Some formal methods with ODE semantics such as Petri nets [39] and pro-
cess algebra [55,91] have nonlinear laws of interaction based on threshold-like functions to model resource contention. 
For instance, these are used to model the firing rate of transition in a Petri net as being proportional to the minimum
among the number of tokens at its incoming places [39].

Relating IDOL programs We cast the problem of relating IDOL programs into the traditional context of equivalences for more 
classical models of computation based on labeled transition systems (LTS). We put forward the analogy between states of 
an LTS and IDOL variables. Thus, our equivalences are between variables, (exactly) preserving their ODE solutions in some 
appropriate sense. We propose two variants of differential equivalence.

The first variant is forward differential equivalence (FDE). This is such that an ODE system can be written for the vari-
ables that represent the equivalence classes. To be more concrete, let us consider the following trivial, yet illustrative, ODE 
example:

ẋ1 = −x1, ẋ2 = k1 · x1 − x2, ẋ3 = k2 · x1 − x3, (1)

where k1 and k2 are constants. Then, it turns out that there is an FDE relating x2 and x3. Indeed, we have

ẋ1 = −x1, ˙(x2 + x3) = ẋ2 + ẋ3 = (k1 + k2) · x1 − (x2 + x3).

By the change of variable y = x2 + x3, this is equivalent to writing

ẋ1 = −x1 ẏ = (k1 + k2) · x1 − y.

This quotient ODE model recovers the sum of the solutions of the variables in each equivalence class. That is, we have that 
setting the initial condition y(0) = x2(0) + x3(0) yields that y(t) = x2(t) + x3(t) at all time points t .

Our second variant is backward differential equivalence (BDE). It equates variables that have the same solutions if they 
start from the same initial conditions. In (1), it can be shown that x2 and x3 are related also by BDE when k1 = k2. In this 
case, we obtain a quotient ODE by removing either equation, say x3, and rewriting every instance of x3 into x2:

ẋ1 = −x1 ẋ2 = k1x1 − x2.

If one starts with x2(0) = x3(0) in (1) then the solution of the quotient ODE gives that x2(t) = x3(t) at all time points t .
Since in BDE every variable in the same equivalence class has the same solution, the original model can be fully re-

covered. On the other hand, from the quotient FDE model one cannot recover the original solutions, but FDE poses no 
restriction on the initial conditions.

Checking and computing IDOL equivalences An IDOL variable corresponds to a real function, thus it represents a continuous 
state space: proving two IDOL variables equivalent concerns relating two real-valued functions for all possible assignments—
which involves reasoning over an uncountable state space. A major consequence is that established techniques for checking 
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and computing equivalence relations over models based on LTSs with discrete state spaces (e.g., [77,64,61,58,6]) do not carry 
over.

We tackle this problem by proposing a symbolic approach based on satisfiability modulo theories (SMT) [7]. We en-
code differential equivalences into satisfiability problems of quantifier-free first-order logic formulae containing IDOL terms. 
Checking candidate relations amounts to establishing their validity, as usual through the unsatisfiability of their negation. 
The SMT solver that we use, the well-known Z3 [40], is a decision procedure for such formulae, so it can answer whether or 
not they are valid.

More importantly, we provide an automatic technique to compute the largest differential equivalence for an IDOL model, 
which is very relevant for minimization because it yields the smallest quotient ODE system. We do this by developing a 
partition refinement algorithm (cf. [77]) to which we introduce two novelties.

For FDE, we are able to establish a key technical result. We start from its classic definition in terms of a linear trans-
formation of the ODE variables that preserves the aggregated dynamics, e.g., [89,76,2]. This definition requires to check 
“higher-order” properties, i.e., it involves (partition) blocks of variables, instead of individual variables. Thus, if a block does 
not satisfy the FDE condition, no information can be derived about how to split the current candidate partition. Instead, we 
equivalently verify FDE in terms of checks that involve only two IDOL variables at a time; that is, we characterize FDE in a 
form that does enable partition refinement.

For BDE, the partition refinement is counter-example guided. We fully exploit the ability of an SMT solver to produce 
an assignment of the variables that falsifies the assertion that a candidate partition is a BDE. The algorithm splits partition 
blocks according to such assignment; the iterative procedure terminates with the coarsest BDE partition when a distinguish-
ing assignment is not found.

Applications Many apparently unrelated formalisms and languages can benefit from the common framework provided by
IDOL. In order to support our claim we consider three applications: CTMCs, CRNs, and process algebras.

Continuous-time Markov chains. The properties captured by FDE and BDE are analogous to ordinary and exact lumpa-
bility for CTMCs [14], respectively, and many behavioral equivalences for higher-level languages based on these no-
tions (e.g., [70,59,57,15,37,85,10,41,48]). Indeed, we use the terms “forward” and “backward” to align with the termi-
nology used in some of this literature (e.g., [85,48,23]). Actually, we show that FDE and BDE correspond to their re-
spective variants of lumpability when the IDOL program is a linear ODE system representing a CTMC. For instance, 
the ODEs (1) are the Kolmogorov equations of the simple CTMC with state-transition diagram in the inset below,
where xi is the probability of finding the process in state i. However our differential equivalences 
are more general: they do not require k1 and k2 to be nonnegative, and can establish relations also 
for nonlinear ODEs. For instance, using the nonlinear ODE ẋ1 = −x2

1 in (1) we would equate x2 and 
x3 in the forward as well as in backward sense.

Chemical reaction networks and their extensions. CRNs have received increased attention in com-
puter science due to the powerful analogy between computational processes and biological sys-
tems [82,49,22]. In addition to being a relevant model per se, CRNs are also closely related to many 
other languages. Cardelli establishes a correspondence between his Chemical Ground Form and 
CRNs [20]; rule-based languages such as κ [36] and BioNetGen [11] provide compact descriptions of biomolecular systems 
that can be “compiled down” to CRNs; Petri nets with an appropriate mass-action semantics on the transitions correspond 
to CRNs (e.g., [56]).

The idea of formally relating the dynamics of CRNs has recently emerged. In [21] Cardelli presents the notion of emulation
between two CRNs as a property that exactly relates the ODE trajectories of a source CRN to those of a target CRN. Syntactic 
conditions are given to establish an emulation under the assumption of mass-action kinetics. Here we show that BDE is 
more general than emulation. As an application, we find that the emulations found for a class of biological processes in [21]
are preserved even when an alternative dynamics based on the Hill kinetics is considered. This reinforces the findings 
in [21] that networks with different biological functionality are indeed related structurally, in a way that is insensitive to 
the underlying kinetics assumed.

In [23] Cardelli et al. present forward and backward bisimulations. The intent is analogous to ours, but those are equiva-
lences that can be detected syntactically by inspecting the set of reactions. However, they only apply to a class of elementary
CRNs with mass-action semantics (namely, reactions with at most two reagents). Under these restrictions we show that for-
ward bisimulation is only a sufficient condition for FDE; instead, backward bisimulation corresponds to BDE. Furthermore, 
in [23,25] a polynomial time partition refinement algorithm to compute the largest bisimulations is provided.

Forward and backward bisimulation have been recently extended in [27] to forward and backward equivalence, allowing 
for a finitary syntactic characterization of ODE systems whose right-hand sides are given in terms of multi-variate poly-
nomials of any degree. Similarly to the largest forward and backward bisimulation [23], the largest forward and backward 
equivalence is described in terms of syntactic checks and can be computed by an algorithm whose time and space complex-
ity is polynomial in the number of ODE variables and monomials [27]. At the same time, forward and backward equivalence 
characterize FDE and BDE, respectively, provided that FDE and BDE are restricted to polynomial ODE systems. We use bench-
marks, including those from [23], to present two findings of experimental nature: (i) we confirm that FDE and BDE coincide 
with forward and backward equivalence, respectively, with FDE and BDE being more computationally expensive, and we 
show that FDE is in turn more computationally expensive than BDE; and (ii) despite certain non-polynomial ODE systems 
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Fig. 1. Paper overview.

can be transformed into polynomial ones using transformations like [53], this “polynomization” might break equivalences 
present in the original system.

Process algebra. Our last application is a fragment of Hillston’s PEPA [59]. This is a stochastic process algebra which 
has been more recently equipped also with an ODE semantics with nonlinear minimum-based drifts that approximate the 
average evolution of underlying CTMCs with massively parallel computations [60,55,91]. We take PEPA as the representative 
of a family of languages for the quantitative evaluation of computing systems — indeed it is expressive enough to cover the 
semantics of a popular class of queuing networks [90] and Petri nets [13,50]. We show that recently proposed behavioral 
equivalences for PEPA [92,62] are special, language-specific cases of our differential equivalences.

Summary Fig. 1 provides a pictorial representation of the structure and the main results of this paper. The experiments 
herein reported are replicable via the tool ERODE [28] available at http://sysma .imtlucca .it /tools /erode, following the in-
structions provided in the accompanying web-page http://sysma .imtlucca .it /tools /erode /comparison -syntactic -symbolic. This 
paper extends [24] by publishing all proofs and by relating to forward and backward equivalence which were published 
after our conference paper [24]. In particular, in Section 4.2 we first compare against [27] in terms of performance. Then, 
we compare in terms of the reduction power of our approach when [27] is combined with the polynomial transformation 
technique [53] which allows one to transform a (sufficiently smooth) non-polynomial ODE system into a polynomial one.

Further related work We are not aware of general automated approaches to ODE equivalences as done in this paper, though 
there is a large literature of techniques in domain-specific situations. The combinatorial explosion of CRN biochemical 
models has spurred considerable research in this area, e.g., [34,35,47,38,18,45,17,23,46,19]. In particular, the fragmentation 
approach for κ identifies a coarse-grained ODE system for models with mass-action semantics through sums of variables; 
this is weaker than an equivalence relation over species, because one variable may appear in more than one block (a frag-
ment) [47,38]. Instead, [18,17] discuss equivalence relations for species of reaction networks that are implicitly described by 
a set of κ rules. The algebraic approach [46] focusses on transformation rules of site graphs and deals in a unifying way 
with single push-out semantics. In particular, sufficient conditions for forward and backward bisimulation over population 
semantics are derived. Using the terminology of [76], fragmentation is a form of improper lumping, as opposed to our dif-
ferential equivalences where species belong to a single block. As such it can still be seen as an ODE aggregation obtained 
through a transformation of the variables by a linear matrix, for which the general theory is well established (see [89,76,2]) 
but no general algorithms for computing the largest equivalences are available.

For polynomial ODE systems, the conditions of backward differential equivalence describe a particular family of dif-
ferential invariants [52,12,81]. While [52,81] use differential invariants to estimate the reachable set of polynomial ODE 
systems, [12] considers also their reduction. The corresponding reduction algorithm, however, does not enjoy a polynomial 
time complexity in general. Instead, for polynomial ODE systems, differential equivalences can be computed by algorithms 
whose time and space complexity are polynomial in system’s size [27].

SMT has become a cornerstone in the programming languages and in the verification community, with contributions 
to program synthesis [54], constraint programming [67], and symbolic optimization [71]. The combination of SMT and 
equivalence relations has been the subject of recent investigations. In [9] partition-refinement algorithms are proposed 
to compute equivalences between terms over arbitrary theories inferred from a set of axioms. Applied to our context, 
these partition-refinement algorithms could be used to check if a candidate partition is a differential equivalence, but 
not to compute the largest equivalence for an IDOL program. In [42] the authors present an SMT-based approach for the 
computation of the coarsest ordinary lumpable partition of a Markov chain defined in a fragment of PRISM’s [68] input 
language.

Finally, links between ODEs and SMT are established in the formal verification community, especially for hybrid systems 
(e.g., [51,83,72]); however none of these works considers ODE comparisons and minimizations through equivalence relations. 
Still at the interface between control theory and computer science, the idea of bisimulation for dynamical systems has been 
developed in a series of works by Pappas and coauthors [78] and van der Schaft [96]. These works are similar in spirit to 

http://sysma.imtlucca.it/tools/erode
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ours, but the setting is different because the focus is on control systems, i.e., dynamical systems with internal states, external 
inputs, and output maps. In that context, bisimulation relates internal states mapped to the same output, i.e., they cannot 
be told apart by an external observer. The largest bisimulation is therefore related to the maximal unobservability subspace 
of a control system (e.g., [96, Corollary 6.4]) while our largest differential equivalences provide the coarsest partition of ODE 
variables that preserves the dynamics.

2. Intermediate drift oriented language

We first introduce IDOL as a language to define a class of ODEs. More precisely, IDOL can describe nonlinear, first-order, 
autonomous, and explicit finite systems of coupled ODEs. Then, we present the notions of FDE and BDE as equivalence 
relations over IDOL variables, with their characterizations in terms of properties enjoyed by the underlying semantics.

2.1. Syntax and semantics

Definition 1 (IDOL syntax). The syntax of programs of the intermediate drift oriented language (IDOL) is given by

p ::= ε | ẋi = f , p f ::= n | xi | f + f | f · f | f
1
m ,

where xi ∈V and n, m ∈Z and m �= 0.

The set V represents ODE variables. A program is a list of elements ẋi = f where each element gives the drift f for 
ODE of the variable xi . Given an IDOL program p, we define Vp = {x1, . . . , xn} as the set of variables in p. We say that p is 
well-formed if for every xi ∈ Vp there exists a unique term ẋi = f in p. We denote its drift by f i . From now on we assume 
to work with well-formed programs only. Finally, we remark that the restriction to integer parameters allows us to encode 
rationals, which is without loss of generality in practice (e.g., [4]).

Although some results presented below hold for richer classes of ODE systems, drifts expressible in IDOL form a class for 
which our differential equivalences are decidable. Despite the minimality of IDOL, it is possible to encode frequently used 
dynamics such as:

• the law of mass action, with drifts such as x1 · x2;
• the Hill kinetics for CRNs, with drifts such as x2

1/(1 + x2
1);

• and the minimum function for threshold based drifts, where

min(x1, x2) := 1

2
(x1 + x2 − |x1 − x2|), with |x| := (x · x)

1
2 .

For the semantics of IDOL, we interpret each term f i in a standard way, as a real function of real variables on an 
appropriate domain, D( f i) ⊆RVp , where the function is well-defined, i.e., with no division by zero or negative arguments in 
roots. We denote by σ an assignment of variables in p, thus σ ∈RVp . The semantics of IDOL depends on a context: this is 
a pair c = (T , σ̂ ) that contains a time horizon T > 0 and an initial assignment σ̂ . The semantics of a program p is a function 
that maps the variables Vp to a continuous trajectory �x�

p
c : [0; T ] → RVp that describes the time course of every variable 

when starting from a given initial assignment σ̂ . In other words, �xi �
p
c (t) is the value of the variable xi at time t when 

�xi �
p
c (0) = σ̂ (xi).

Definition 2 (IDOL Semantics). The semantics of an IDOL program p in a context c = (T , σ̂ ) is the unique differentiable function

�x�
p
c := (

�xi �
p
c
)

xi∈Vp
, �x�

p
c : [0; T ] → RVp

that satisfies

�xi �
p
c (t) = σ̂ (xi) +

t∫
0

� f i �
p
c (�x�

p
c (s))ds, for all 0 ≤ t ≤ T ,

where � f i �
p
c : D( f i) →R is recursively defined as follows:

�n�
p
c :RVp →R, �n�

p
c (σ )= n

�x�
p
c :RVp →R, �x�

p
c (σ )= σ(x)

� g + h�
p
c :D(g) ∩ D(h) →R, � g + h�

p
c (σ )= � g�

p
c (σ ) + �h�

p
c (σ )

� g · h�
p
c :D(g) ∩ D(h) →R, � g · h�

p
c (σ )= � g�

p
c (σ ) · �h�

p
c (σ )

� g
1
m �

p
c :D(g

1
m ) →R, � g

1
m �

p
c (σ ) = (

� g�
p
c (σ )

) 1
m
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with D(g
1
m ) = {σ ∈ D(g) : (� g�

p
c (σ ))

1
m is defined}. If no such unique function exists, we call p ill-posed.

As usual we call � f �
p
c = (� f i �

p
c )xi∈Vp the vector field of program p in context c. Also, the semantics of an even root 

term is given by the nonnegative solution; e.g., in any context c, (�4�
p
c )1/2 is 2 and not −2. We remark that, in general, 

no closed-form expressions for �xi �
p
c exist. However these functions can be computed using standard numerical integration 

algorithms, cf. [3].

Assumptions IDOL is permissive enough to define somewhat degenerate ODEs with no solutions like ẋ1 = x−1
1 , with σ̂ (x1) =

0, or multiple solutions as in ẋ1 = |x1|1/2, with σ̂ (x1) = −1. We exclude these cases making certain assumptions that are 
usual when dealing with ODEs (e.g., [83]). For this, we define a notion of invariance which considers a subset of the drifts’ 
domain containing the trajectories of the IDOL variables starting from any initial condition within that set.

Definition 3. Given a program p and a time horizon T > 0, a set E ⊆ ⋂
xi∈Vp

D( f i) is invariant with respect to p and T if, for all 
σ̂ ∈ E and t ∈ [0; T ], it holds that �x�

p
c (t) ∈ E, where c = (T , σ̂ ).

Now we make the following assumptions:

A1 For a given time horizon T > 0 and IDOL program p, we can fix some E(p) ∈ {RVp
>0, R

Vp
≥0, RVp } that is invariant and 

that satisfies E(p) ⊆ ⋂
xi∈Vp

D( f i).

A2 For all xi ∈ Vp , the function � f i �
p
c : D( f i) →R is locally Lipschitz continuous at any point of E(p).

A1 is a technical assumption that allows us to work with nice enough domains when reasoning about differential equiv-
alences. Our theory can be developed for more general invariant sets, but at the expense of significantly more convoluted 
mathematical definitions which do not seem to add substantial value to our contribution. Instead, A2 is a standard textbook 
condition to ensure the existence of a unique solution, hence to exclude ill-posedness.

In many applications, models are typically such that a) the solution will be positive if the initial condition is positive 
and b) the drift is well-defined on positive reals. Under such circumstances, local Lipschitz continuity is usually immediate. 
Indeed, all IDOL programs presented in this paper satisfy these assumptions (and we will avoid stating which invariant set 
they have).

Notation Differential equivalences are partitions of IDOL variables. Whenever convenient, for a program p and a given 
partition H of Vp , we write H = {xH,1, . . . , xH,|H |} for any H ∈ H. As usual, we denote by ψ[t/s] the term that arises by 
replacing each occurrence of t in ψ by s.

2.2. Forward differential equivalence

With FDE one can write an IDOL program with one variable for each equivalence class, representing the sum of the 
trajectory solutions of its members. A partition H is induced by an FDE if the aggregated drift

∑
xi∈H fi of any block H ∈ H

can be written in terms of the sums of the variables within the block {∑xi∈H xi : H ∈H}. For instance, in the IDOL program

ẋ1 = −2x1 − 3x2 − 4x3 ẋ2 = −3x1 − 4x2 − 5x3

ẋ3 = −6x1 − 4x2 − 2x3 ẋ4 = x1 + x2 + x3 − 2x4

the aggregated drifts for the partition {{x1, x2, x3}, {x4}} are

f1 + f2 + f3 = −11 · (x1 + x2 + x3) + 0 · x4, f4 = 1 · (x1 + x2 + x3) − 2 · x4.

Clearly they depend only on the values of x1 + x2 + x3 and x4.
Answering the question whether sums of variables can be factored out from the aggregated drifts means finding new 

appropriate functions with arity equal to the number of equivalence classes. In this example, we would have drifts g1 and 
g2 defined as

g1 = −11 · y1 g2 = 1 · y1 − 2 · y2

where y1 and y2 represent blocks {x1, x2, x3} and {x4}, respectively. We avoid synthesizing these functions directly by 
exploiting an alternative characterization that involves reasoning on properties concerning only the original variables: The 
evaluation of the aggregated drift must be invariant under any change of assignment of the variables that preserves the sum 
of values across each block.

To do this formally, we rewrite each variable as a scaling of the corresponding sums-of-variables of its block, such that all 
scaling factors are nonnegative and sum to one; in the example, we rewrite x1 with s1(x1 + x2 + x3), x2 with s2(x1 + x2 + x3), 
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and s3(x1 +x2 +x3) with scaling factors s1, s2, and s3. The alternative characterization consists in proving that the aggregated 
drifts do not depend on the assignments of the scaling factors.

Importantly, following [89] it can be shown that if such rewriting does not change the values of the aggregated drifts 
for some choice of the scaling factors, then any choice will enjoy this property. The notion of FDE checks this using the 
uniform scaling that gives equal weight to every variable in the block (for instance s1 = s2 = s3 = 1/3 in the example above). 
By assumption A1, the uniform scaling ensures that terms are always rewritten into terms that give rise to well-defined 
functions.

We encode this property in first order logic with function symbols from IDOL that are interpreted in the standard 
way, having Vp as free variables. We denote by �(p) the logical formula that encodes E(p) (e.g., if E(p) = R

Vp
>0 then 

�(p) := ∧
xi∈Vp

xi > 0).

Definition 4 (FDE). Let p be an IDOL program and H a partition of Vp . Then, H is a forward differential equivalence if the following 
formula is valid:

�(p) →
∧

H∈H

( ∑
xi∈H

fi =
∑
xi∈H

fi

[
x j

/∑
xk∈H ′ xk

|H ′| : H ′ ∈ H, x j ∈ H ′]) (�H)

The next definition provides the quotient IDOL program with respect to an FDE.

Definition 5 (FDE Quotient). Let p be an IDOL program and H an FDE partition. Then, the forward quotient of p with respect to H, 
denoted by −→pH , is given by:

ẏH =
∑
xi∈H

fi

[
x j

/ yH ′

|H ′| : H ′ ∈ H, x j ∈ H ′], for all H ∈ H.

The uniform scaling and A1 ensure that −→pH is not ill-posed.
We now state a crucial dynamical characterization theorem: A partition of IDOL variables is FDE if and only if the ODEs 

of the quotient program preserve the sums of the original trajectories in each equivalence class. Hence the largest FDE 
represents the best possible aggregation that can be obtained in this sense.

Theorem 1 (Dynamical FDE Characterization). Let p be an IDOL program, T > 0 a time horizon and H a partition of Vp . Then, H is 
an FDE partition with forward quotient −→pH if and only if

� yH �
−→pH
c̃ (t) =

∑
xi∈H

�xi �
p
c (t)

for all σ̂ ∈ E(p), H ∈H and t ∈ [0; T ], where c := (T , σ̂ ), c̃ := (T , σ̂H) and σ̂H(yH ) := ∑
xi∈H σ̂ (xi) for all H ∈H.

Proof. The proof follows as a special case of Theorem 1.2 and Theorem 1.3 from [89] which consider general aggregation 
functions of which sums are a special case. In particular, the aforementioned theorems remain valid if f and f̂ in [89] are 
assumed to be (only) continuous. Thus, since we instantiate aggregation functions h from [89] by matrices (see also the 
proof of Theorem 2 of the current work), the claim follows from Theorem 1.3 of [89]. �

Let us remark that FDE is stated in terms of a partition and is thus consistent with the notion of lumpability for 
ODEs [89]. This has the advantage that the above theorem is a direct consequence of the theory presented in [89], hence we 
omit the proof here. However, this is not in a form that enables an algorithm for computing the largest FDE using partition 
refinement, because an assignment that falsifies the FDE conditions �H does not provide information about which variables 
to tell apart in the refinement step.

We tackle this problem by providing a characterization of FDE in terms of binary checks, i.e., involving two variables only 
at a time. Intuitively, for each block H ∈ H and any pair xi, x j ∈ H , such characterization allows to check if the fact that xi
and x j belong to the same block prevents H from being an FDE.

More precisely, an equivalence relation R over Vp is FDE if and only if for all (xi, x j) ∈ R it holds that the aggregated 
drifts of all blocks in H are invariant under a scaling of the sum-of-variables which involves only two variables belonging 
to the same block, rather than all of them as per Definition 4. The intuition is that any scaling considered in Definition 4
can be equivalently achieved as a composition of such “binary” scalings. To our knowledge, such a binary characterization 
is proved here for the first time.

Theorem 2 (Binary FDE characterization). Let p be an IDOL program, R be an equivalence relation on Vp , and H = Vp/R. Then H
is an FDE if and only if for all distinct xi, x j ∈ Vp we have that (xi, x j) ∈R implies that the following formula is valid:
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�(p) →
∧

H∈H

( ∑
xk∈H

fk =
∑
xk∈H

fk
[
xi/s·(xi + x j), x j/(1 − s)·(xi + x j)

])
(�H

xi,xj
)

Proof. Note that s is not an ODE variable from V but a variable of the first order logic. However, we still denote the 
interpretation of any variable s̃ /∈V by σ(s̃). To increase readability in the proof we shall also write �·� instead of �·�

p
c .

Let us assume that �H
xi ,x j

is valid for all H ∈ H and xi, x j ∈ H . We have to show that �H is valid. For this, we fix 
arbitrary σ ∈ E(p) and H ∈ H and assume without loss of generality that H = {x1, . . . , xm} and that σ(xi) ≥ σ(xi+1) for all 
1 ≤ i ≤ m − 1. Together with μH := 1

|H |
∑

1≤i≤m σ(xi) we then define σ i ∈RVp , where 1 ≤ i ≤ m − 1, as

σ(xk)
i+1 :=

⎧⎪⎨
⎪⎩

μH , k = i

(1 − σ(si)) · (σ i(xi) + σ i(xi+1)) , k = i + 1

σ i(xk) , otherwise

with σ 1 := σ and σ(si) := μH/(σ i(xi) + σ i(xi+1)) for all 1 ≤ i ≤ m − 1. Since σ(xi) ≥ σ(xi+1) for all 1 ≤ i ≤ m − 1, it holds 
that 0 < σ(si) ≤ 1 for all 1 ≤ i ≤ m − 1. Thus, since �H

xi ,x j
is valid for all xi, x j ∈ H , we infer that � f �(σ i+1) = � f �(σ i)

because both terms are equal to

� f [xi/si(xi + xi+1), xi+1/(1 − si)(xi + xi+1)]� (σ̃ i),

where σ̃ i := σ i ∪ {(si, σ(si))} ∈ RVp∪{si} , for all 1 ≤ i ≤ m − 1. Hence, � f �(σ |H |) = � f �(σ |H |−1) = . . . = � f �(σ 1) = � f �(σ ). 
Note also that σ |H | satisfies σ |H |(xk) = σ |H |(xl) for all xk, xl ∈ H . By applying the above argument to the remaining blocks 
H \ {H} (i.e., in second step we would consider a block H ′ �= H and the vector σ |H |), we infer that �H is true under the 
assignment σ . Since σ was chosen arbitrarily, H is an FDE.

For the proof of the converse, we first consider the case E(p) = R
Vp
>0 and define, for any partition H of Vp , the matrix 

MH ∈ {0, 1}H×Vp by setting (MH)H,xk
to 1 if xk ∈ H , and 0 otherwise. The matrix MH can be thought of as an “aggregation” 

matrix. In particular, the rows of the matrix MH encode the blocks of H. Then, for any positive generalized right inverse 
of MH , i.e. a matrix MH ∈ (0; 1]Vp×H that satisfies MHMH = I, the function σ �→ MHMHσ defines a scaling on H. Since 
the entries of MH are positive, we infer MHMHσ ∈ R

Vp
>0 for all σ ∈ R

Vp
>0. As pointed out at the beginning of Section 2.2, 

any scaling that yields well-defined terms is equivalent to the notion of FDE [89]. Consequently, H is an FDE if and only 
if there exists a generalized right inverse MH ∈ (0; 1]Vp×H of MH such that MH

(
� f �(σ )

) = MH
(

� f �(MHMHσ)
)

for all 
σ ∈ R

Vp
>0. With this in mind, let us now assume that H is an FDE partition and fix arbitrary σ ∈ E(p), H0 ∈ H, xi, x j ∈ H0

and σ(s) ∈ (0; 1]. We next show that �H
xi ,x j

is true for the assignment σ . Fix the generalized right inverse

(MH)xk,H =

⎧⎪⎪⎨
⎪⎪⎩

σ (s)(σ (xi)+σ (x j))∑
xl∈H0

σ (xl)
, xk = xi

(1−σ (s))(σ (xi)+σ (x j))∑
xl∈H0

σ (xl)
, xk = x j

σ(xk)/(
∑

xl∈H σ(xl)) , xk /∈ {xi, x j}
It is straightforward to show that

(
MHMHσ

)
(xk) =

⎧⎪⎨
⎪⎩

σ(s)(σ (xi) + σ(x j)) , xk = xi

(1 − σ(s))(σ (xi) + σ(x j)) , xk = xi

σ(xk) , otherwise

Since H was assumed to be an FDE, the above discussion implies that MH
(

� f �(σ )
) = MH

(
� f �(MHMHσ)

)
. This, however, 

implies that �H
xi ,x j

holds true for the assignment σ . Since σ ∈ E(p), H0 ∈H and xi, x j ∈ H0 were chosen arbitrarily, we infer 

the claim in the case where E(p) =R
Vp
>0.

The case E(p) ∈ RVp (resp. E(p) ∈ R
Vp
≥0) follows by generalizing our argumentation. In particular, the generalized right 

inverse has to be chosen from RVp×H (resp. [0; 1]Vp×H). Moreover, note that (MH)xk,H is well-defined only if all aggre-
gated variables underlying the fixed σ ∈ RVp are nonzero. However, such assignments build a (Lebesgue) zero set of E(p)

and the vector field � f � is continuous on E(p), which yields the claim. �
2.3. Backward differential equivalence

BDE relates IDOL variables having the same semantics whenever they are given the same initial assignment. This prop-
erty is characterized by the following implication: if the variables in each block of the partition have the same equal 
assignments, then the drifts of any two variables of a block have equal values. Similarly to FDE, we formalize this in first 
order logic.
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Definition 6 (BDE). Let p be an IDOL program and H a partition of Vp . Then H is a backward differential equivalence if the following 
formula is valid:

�(p) →
( ∧

H∈H
(xH,1 = . . . = xH,|H|) →

∧
H∈H

( f H,1 = . . . = f H,|H|)
)

(�H)

For instance, let us consider the IDOL program

ẋ1 = −min(x1,1) + x2 ẋ2 = −min(x2,1) + x1 (2)

We seek to verify that {{x1, x2}} is a BDE partition. Indeed this holds since �H becomes

x1 = x2 → −min(x1,1) + x2 = −min(x2,1) + x1

Definition 7 (BDE Quotient). Let p be an IDOL program and H a BDE partition of Vp . The backward quotient of p with respect to H, 
denoted by ←−pH , is given by

ẏH = f H,1
[
xH ′,1

/
yH ′ , . . . , xH ′,|H ′|

/
yH ′ :H ′ ∈H

]
, for H ∈ H.

Similarly to FDE, the BDE quotient is not ill-posed. For instance, the BDE quotient of (2) with respect to {{x1, x2}} is given 
by

ẏ = ( − min(x1,1) + x2
)[

x1/y, x2/y
]
, i.e., ẏ = −min(y,1) + y

The next characterization result is analogous to Theorem 1.

Theorem 3 (Dynamical BDE Characterization). Let p be an IDOL program, T > 0 a time horizon and H a partition of Vp . Then, H is a 
BDE partition with backward quotient ←−pH if and only if σ̂H(yH ) = σ̂ (xH,1) = . . . = σ̂ (xH,|H |) for all H ∈H implies

� yH �
←−pH
c̃ (t) = �xH,1 �

p
c (t) = . . . = �xH,|H|�

p
c (t)

for all H ∈H and t ∈ [0; T ], with c := (T , σ̂ ) and c̃ := (T , σ̂H).

Proof. The proof of Theorem 6 from [23] carries over to vector fields induced by IDOL. �
The statement is shown by using the same strategy as in the proof of Theorem 6 in [23].
Let us point out that the notions of FDE and BDE are not comparable. For instance, the partition {{x1, x2}} is not an FDE 

of (2) because the formula

−min(x1,1) + x2 − min(x2,1) + x1 = −min
( x1 + x2

2
,1

)
+ x1 + x2

2
− min

( x1 + x2

2
,1

)
+ x1 + x2

2

is not true for the assignment σ(x1) = 2 and σ(x2) = 0. Conversely, {{x1}, {x2, x3}} is an FDE partition of (1) for any choice 
of k1 and k2, but a BDE only if k1 = k2.

3. Computing differential equivalences

We now discuss how to compute differential equivalences and how to implement this using SMT. We first consider the 
problem of checking if a given partition is a differential equivalence. Then we focus on computing the largest differential 
equivalence for an IDOL program using partition refinement.

3.1. Checking differential equivalences

Tarski’s famous result ensures that one can decide whether �H , �H
xi ,x j

and �H are valid because the functions supported 

by IDOL can be expressed in the theory of reals (R, +, −, ·, 0, 1, <, =). For instance, terms with roots like y = x
1
2 can be 

encoded as ∃y(y2 = x), while the encoding of fractions is straightforward. However, no efficient computation is possible in 
general.

Proposition 1. Deciding a differential equivalence is coNP-hard.
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Proof. Let L denote the language of valid sentences of the form ∀x1 . . .∀xn( f i = f j) where f i and f j denote the drifts of 
xi and x j , respectively. Further, let T denote the set of tautologies of propositional logic. We next show that there exists a 
reduction from T to L in polynomial time. Since there exists a polynomial time reduction from the complement of SAT to 
T , this shows that deciding L is coNP-hard.

We next discuss the reduction from T to L. Given a propositional formula φ with boolean variables x1, . . . , xn , we define 
fφ by means of structural induction as follows:

φ = xi : set fφ := xi φ = ¬φ0 : set fφ := 2 − fφ0

φ = φ0 ∧ φ1 : set fφ := min( fφ0 , fφ1) φ = φ0 ∨ φ1 : set fφ := max( fφ0 , fφ1)

Note that the maximum function can be expressed in IDOL because the maximum can be expressed using the absolute 
value function. Intuitively, we model xi = ⊥ and xi = � by xi ∈ (0, 1) and xi ∈ (1, 2), respectively. With this idea in mind, 
we define ψ := ∧n

i=1

(
xi = � ↔ 1 < xi < 2 ∧ xi = ⊥ ↔ 0 < xi < 1

)
for x1, . . . , xn ∈ {�, ⊥} and x1, . . . , xn ∈RV , meaning that 

ψ is true if and only if the reals x1, . . . , xn are consistent with the vector of booleans x1, . . . , xn . By performing a proof on 
the structural definition of φ, it is possible to show that

∀x1∀x1 . . .∀xn∀xn
(
ψ → (0 < fφ < 1 ∨ 1 < fφ < 2) ∧ ψ → (

φ ↔ fφ > 1
))

(3)

Note that the above formula is not in the fragment of first order logic in which FDE and BDE are encoded because it contains 
boolean variables. This, however, is not important because the above statement is only needed to ensure the correctness of 
our encoding which is defined as follows. If φ is not a well-defined propositional formula, we set θ(φ) := ∀x1 . . .∀xn(x1 = 0)

which is obviously not in L. Instead, if φ is a well-defined propositional formula with boolean variables x1, . . . , xn , we define

θ(φ) := ∀x1 . . .∀xn
(
χ · max( f¬φ,1) = χ

)
χ := min

1≤i≤n

(|xi − 1| · max(xi,0) · max(2 − xi,0)
)

Note that our reduction is polynomial in space and time. Moreover, observe that the nonnegative function χ is positive if 
and only if for all 1 ≤ i ≤ n it holds that 0 < xi < 1 ∨ 1 < xi < 2. With this, we infer using (3) that

∀x1 . . .∀xn(φ = �) ⇔ ∀x1 . . .∀x1
(
χ > 0 → f¬φ < 1

) ⇔ ∀x1 . . .∀xn
(
χ · max( f¬φ,1) = χ

) �
Despite Proposition 1, in many cases the computation is feasible in practice. We provide examples in Section 4.2.2. 

Here we briefly discuss how an SMT solver can be used for this purpose. The validity of the quantifier-free formulae �H , 
�H

xi ,x j
and �H can be encoded, as usual, into the unsatisfiability problem of their negation, i.e., by invoking sat(¬�H),

sat(¬�H
xi ,x j

), and sat(¬�H). These can be decided using the decision procedure nlsat [63], which is implemented in Z3 
v4.0 [40]. Thus checking differential equivalences is sound and complete using state-of-the-art SMT technology: A partition 
H is FDE (resp., BDE) if and only if sat(¬�H) (resp., sat(¬�H)) returns “unsatisfiable”. As a concrete example, consider 
the IDOL program (1) and the partition H̄ = {{x1}, {x2, x3}}, which, as discussed, is a BDE if and only if the parameters 
k1 and k2 are equal. The executable Z3 encoding of ¬�H for both the cases k1 �= k2 and k1 = k2 is available at https://
rise4fun .com /Z3 /e9vV.

3.2. Partition refinement

We compute the largest differential equivalence for an IDOL program using a partition refinement algorithm. First, how-
ever, we show that this is a well-posed problem.

Definition 8 (Refinement). Let S be a set, and H1 , H2 two partitions of S. Then, H1 is a refinement of H2 if for any block H1 ∈H1
there exists a block H2∈H2 such that H1⊆H2 .

Theorem 4. Let p be an IDOL program and G be a partition of Vp . Then, there exists a unique coarsest FDE/BDE partition refining G .

Proof. For a given partition H of Vp , write xi ∼H x j whenever there exists some H ∈H such that xi, x j ∈ H .
FDE case. Set ∼H

� := {(xi, x j) : xi = x j or �H
xi ,x j

is valid} and note that ∼H
� is an equivalence relation on Vp . We fix FDE 

partitions H1, . . . , Hn of Vp and set for the sake of brevity ∼i :=∼Hi and ∼∗:=∼H∗ where H∗ := Vp/
(⋃m

i=1 ∼i
)∗

and the 
asterisk denotes transitive closure. Thanks to Theorem 2, it suffices to prove that y1 ∼H∗

� y2 for all H∗ ∈H∗ and y1, y2 ∈ H∗ . 
Thus, let us fix some H∗ ∈ H∗ and y1, y2 ∈ H∗ . Since ∼H∗

� is transitive and y1 = x0 ∼i0 x1 ∼i1 . . . ∼ik−1 xk = y2 for some 
x0, . . . , xk ∈ Vp and i0, . . . , ik−1 ∈ {1, . . . , n}, it suffices to show that x j ∼H∗

� x j+1 for all 0 ≤ j ≤ k − 1. For this, let us fix some 
arbitrary G∗ ∈ H∗ . Then, it can be easily seen that there exist (unique) subsets {Gi

1, . . . , Gi
mi

} ⊆ Hi such that 
⊎mi

l=1 Gi
l = G∗

for all 1 ≤ i ≤ n. Since x j ∼i x j+1 implies that
j

https://rise4fun.com/Z3/e9vV
https://rise4fun.com/Z3/e9vV
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Algorithm 1 Construction of the largest FDE and BDE.
Require: Program p, context c, partition G of Vp and χ ∈{F , B}.
H ← G
while true do

H′ ← refineχ (H)

if H′ = H then
return H

else
H ← H′

end if
end while

Algorithm 2 Routine refineF .
ROUTINE refineF (H)

H′ ← ∅
for all H ∈ H do

R ←{(xi , x j) :xi , x j ∈H and (xi =x j or �H
xi ,x j

is valid)}
H′ ← H′ ∪ (H/R)

end for
return H′

Algorithm 3 Routine refineF .
ROUTINE refineB (H)

if �H is valid then
H′ ← H

else
σw ← getWitness(sat(¬�H))

H′ ← ∅
for all H ∈ H do

R ← {(xi , x j) :xi , x j ∈H and � f i �
p
c (σw ) = � f j �

p
c (σw )}

H′ ← H′ ∪ (H/R)

end for
end if
return H′

∑
xι∈G∗

fι =
mi j∑
l=1

∑
xι∈G

i j
l

fι

=
mi j∑
l=1

∑
xι∈G

i j
l

fι[x j/s(x j + x j+1), x j+1/(1 − s)(x j + x j+1)]

=
∑

xι∈G∗
fι[x j/s(x j + x j+1), x j+1/(1 − s)(x j + x j+1)],

we infer that x j ∼H∗
� x j+1.

BDE case Define ∼H
� := {(xi, x j) : �H

xi ,x j
is valid}, where �H

xi ,x j
:= �(p) → (∧

H∈H(xH,1 = . . . . . . = xH,|H |) → f i = f j
)

and 
note that ∼H

� is an equivalence relation on Vp . Then, we fix BDE partitions H1, . . . , Hn of Vp and, by applying the very 
same reasoning as in the case of FDE, we have to show that x j ∼H∗

� x j+1 for all 0 ≤ j ≤ k − 1. Since x j ∼i j x j+1 implies that 

x j ∼Hi j
� x j+1 and any block of H∗ is a union of blocks of Hi j , it can be easily seen that x j ∼Hi j

� x j+1 implies x j ∼H∗
� x j+1.

So far, we have shown that the coarsening Vp/
(⋃m

i=1 ∼i
)∗

of FDE (BDE) partitions H1, . . . , Hn is again an FDE (BDE) 
partition. The claim follows then by noting that Lemma 26 in [23] ensures that Vp/

(⋃m
i=1 ∼i

)∗
is a refinement of G if each 

Vp/ ∼i is a refinement of G . �
The main difference with respect to the classical partition-refinement algorithms developed for discrete-state transition 

systems (e.g., [64,43,6]) is that each IDOL variable represents a continuous (uncountable) state space. To tackle this problem 
we build a variant which performs a symbolic evaluation at each iteration that checks the validity of the FDE/BDE conditions. 
As usual, the algorithm returns the coarsest FDE/BDE partition that refines a given input partition: This is the trivial partition 
{V p} when computing the largest differential equivalence. We remark that the freedom in choosing the initial partition can 
be useful. For FDE, it allows to single out variables to be preserved in the aggregated program. These are the variables for 
which the modeler is interested in obtaining distinct ODE solutions. BDE requires equivalent variables to be initialized with 
same initial conditions. In this case, an appropriate G can be used to tell apart variables having different initial conditions. 
This is similar to the pre-partitioning for the largest bisimulation of a labeled Markov chain (e.g., [5]), where states with 
different sets of atomic propositions are told apart.

The outer loop of the algorithm, in Algorithm 1, is a classic fixed-point iteration. The specific refinement depends on an 
inner procedure, parameterized by the notion of differential equivalence that is considered (χ = F and χ = B).

FDE partition refinement Routine refineF , shown in Algorithm 2, refines each block of the current partition of IDOL variables 
according to FDE. As discussed, we use the binary characterization of FDE in Theorem 2. Specifically, for each block H ∈ H, 
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routine refineF computes an equivalence relation R on H relating variables xi, x j of H respecting �H
xi ,x j

, and adds to H′
blocks of R-equivalent variables of H . (As discussed, the SMT solver is used when computing R to check the validity of 
�H

xi ,x j
for each pair of variables xi, x j ∈ H .) The algorithm is correct, since H′ is a refinement of H, and two variables xi , x j

for which �H
xi ,x j

is not valid cannot belong to the same block of an FDE partition.

Theorem 5. If p is an IDOL program, G a partition of Vp and χ = F , Algorithm 1 returns the coarsest FDE partition refining G .

Proof. See Section 3.3. �
BDE partition refinement Routine refineB , shown in Algorithm 3, refines the given current partition for computing BDE. 
Differently from the FDE case, Definition 6 can be directly used for this. Furthermore we fully exploit the SMT technology: 
If �H is not valid then ¬�H is satisfiable, hence by invoking sat(¬�H) the SMT solver provides us with a witnessing 
assignment σw for which ¬�H holds. We use such witness as a “counter-example” to refine H: Each block H ∈ H is split 
in sub-blocks of variables xH,i whose drifts f H,i have same value if evaluated according to σw . The algorithm is correct 
because the obtained partition H′ is a refinement of H, and two variables whose drifts have different values for σw cannot 
belong to the same block of a BDE partition.

Theorem 6. If p is an IDOL program, G a partition of Vp and χ = B, Algorithm 1 returns the coarsest BDE partition refining G .

Proof. See Section 3.3. �
As with other SMT-based partition refinement algorithms [42,9], Algorithm 1 as a whole can be implemented in a 

standard way as a routine in a general purpose programming language which calls the SMT solver when required.

3.3. Proofs of Theorem 5 and Theorem 6

The following auxiliary notions, which will be needed later, have been introduced in the proof of Theorem 4 and are 
repeated for convenience.

Definition 9. Let H denote a partition of Vp .

• Write xi ∼H x j whenever there exists some H ∈H such that xi, x j ∈ H.
• Set ∼H

� := {(xi, x j) : xi = x j or �H
xi ,x j

is valid}.

• Using �H
xi ,x j

:= �(p) →(∧
H∈H(xH,1 = . . . = xH,|H |) → f i = f j

)
, define ∼H

� := {(xi, x j) : �H
xi ,x j

is valid}.

It can be easily seen that ∼H
� and ∼H

� are equivalence relations on Vp .
We will need the following auxiliary statements in order to show the correctness of our partition refinement algorithms.

Lemma 1. Let H be a partition of Vp . Then, H is an FDE if and only if H= Vp/(∼H
� ∩ ∼H).

Proof. If H is an FDE, then H is a refinement of Vp/ ∼H
� . Consequently, it holds that H = Vp/(∼H

� ∩ ∼H). Let us now 
assume that H = Vp/(∼H

� ∩ ∼H). Then, it holds that H is a refinement of Vp/ ∼H
� . This, however, implies that H is an 

FDE. �
Lemma 2. Let H1, H2 be two partitions of Vp . Then, the following can be shown.

• xi ∼H1
� x j implies xi ∼H2

� x j if H1 is a refinement of H2.

• xi ∼H1
� x j implies xi ∼H2

� x j if H1 is a refinement of H2.

Proof. Since any block from H2 can be written as a unique union of blocks from H1 and the aggregated drifts of each 
block from H1 are invariant to the term rewriting [xi/s(xi + x j), x j/(1 − s)(xi + x j)], the claim holds true. The second claim 
is trivial. �
Proof of Theorem 5. Assume that G′ denotes the coarsest FDE partition that refines H0 := G and set Hk+1 := Vp/(∼Hk

�∩ ∼Hk ) for all k ≥ 0. Then, the sequence (Hk)k≥0 is such that

• G′ is a refinement of Hk;
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• Hk is a refinement of Hk−1;

for all k ≥ 1. We prove this by induction on k.

• k = 1: Since G′ is a refinement of H0, Lemma 2 ensures the first claim. The second claim is trivial.
• k → k + 1: Thanks to the fact that G′ is a refinement of Hk by induction, Lemma 2 ensures the first claim. The second 

claim is trivial.

Since G′ is a refinement of any Hk , it holds that G′ = Hk whenever Hk is an FDE partition. Thanks to the fact that Hk is 
a refinement of Hk−1 for all k ≥ 1 and Vp is finite, we can fix the smallest k ≥ 1 such that Hk = Hk−1. Since this implies 
Hk−1 =Hk = Vp/(∼Hk−1

� ∩ ∼Hk−1 ), Lemma 1 ensures that Hk−1 is an FDE.
To see that this implies the correctness of the FDE partition refinement algorithm, note that, for a given H, Algorithm 2

calculates H′ ← Vp/(∼H
� ∩ ∼H). �

The next auxiliary result will be needed in the proof of Theorem 6.

Lemma 3. Let us assume that G′ denotes the coarsest BDE partition that refines G and let H be such that G′ is a refinement of H. 
Moreover, let us assume that σ ∈ E(p) is such that

• σ(xi) = σ(x j) for all H ∈H and xi, x j ∈ H;
• � f i �

p
c (σ ) �= � f j �

p
c (σ ) for some H ∈H and xi, x j ∈ H.

Then, ∼σ := {(xi, x j) : � f i �
p
c (σ ) = � f j �

p
c (σ )} is an equivalence relation on Vp and G′ is a refinement of Vp/(∼σ ∩ ∼H). Crucially, it 

holds that Vp/(∼σ ∩ ∼H) is a proper refinement of H, meaning that H �= Vp/(∼σ ∩ ∼H).

Proof. It can be easily seen that ∼σ is an equivalence relation on Vp . Thanks to Lemma 2, we know that xi ∼G′
� x j implies 

xi ∼H
� x j for any xi, x j ∈ Vp . Thus, xi ∼G′

� x j implies xi ∼σ x j for any xi, x j ∈ Vp . This shows that G′ is a refinement of 
Vp/(∼σ ∩ ∼H). At last, we note that the properties of σ induce that Vp/(∼σ ∩ ∼H) is a proper refinement of H. �
Proof of Theorem 6. Let us assume that G′ denotes the coarsest BDE partition that refines G . Since Algorithm 3 provides 
us with a refinement H′ of a given H, the BDE partition refinement calculates a sequence (H0, . . . , Hn) such that H0 = G , 
Hn−1 = Hn and Hi+1 is a refinement of Hi for all 0 ≤ i ≤ n − 1. Thanks to Lemma 3, we know that G′ is a refinement 
of Hi for all 0 ≤ i ≤ n. Since the BDE partition refinement algorithm stops if it finds a BDE partition, this implies that 
Hn−1 = G′ . �
4. Applications

In this section we relate IDOL to CTMCs, CRNs, and the Fluid process algebra (FPA) process algebra [94,93]. We show that 
differential equivalences include the already available notions of equivalence developed in those domains. To do this in a 
self-contained manner we present the definitions of the semantics as well as of the original equivalences, while we refer to 
the literature for the intuitions and motivations behind the languages themselves. In all cases, the encoding of the original 
semantics into IDOL is straightforward, hence we omit this formal step and directly give the underlying IDOL program.

4.1. Continuous-time Markov chains

Let us consider a CTMC with states {1, . . . , n} that is given in terms of its generator matrix Q = (qi, j)1≤i, j≤n where 
qi, j ∈Q. That is, for i �= j, the entry qi, j ≥ 0 defines the rate at which the CTMC moves from state i into state j, whereas we 
set qi,i = − 

∑
i �= j qi, j for all 1 ≤ i ≤ n. Then, the corresponding IDOL program is given by the Kolmogorov forward equations.

Definition 10. The IDOL program p Q of a CTMC (qi, j)1≤i, j≤n is

ẋi = −
∑
j �=i

qi, j · xi +
∑
j �=i

q j,i · x j, for all 1 ≤ i ≤ n.

Meaningful contexts for p Q are such that the initial condition σ̂ is a probability distribution, i.e., 
∑

1≤i≤n σ̂ (xi) = 1, with 
σ̂ (xi) ≥ 0 for all 1 ≤ i ≤ n. For such a context c, �xi �

p
c (t) gives the probability of being in state i at time t .

We next provide the notions of lumpability for CTMCs [14].
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Definition 11 (Ordinary and Exact Lumpability). Let Z be a partition of {1, . . . , n} and set

q[i, Z ] :=
∑
j∈Z

qi, j and q[Z , i] :=
∑
j∈Z

q j,i,

where 1 ≤ i ≤ n and Z ⊆ {1, . . . , n}.

• Z is called ordinarily lumpable if q[i, Z ′] = q[i′, Z ′] for all Z , Z ′ ∈Z and i, i′ ∈ Z .
• Z is called exactly lumpable if q[Z ′, i] = q[Z ′, i′] for all Z , Z ′ ∈Z and i, i′ ∈ Z .

This definition motivates our terminology. Ordinary lumpability is a “forward” criterion because it relates states according 
to their outgoing transitions (toward equivalence classes); exact lumpability is a “backward” criterion since it relates states 
according to incoming transitions (from predecessor equivalence classes). On the domain of CTMCs, FDE and BDE turn out 
to be equivalent to ordinary lumpability and exact lumpability, respectively.

Theorem 7. Fix a CTMC Q = (qi, j)1≤i, j≤n and let Z be a partition of {1, . . . , n}. Then, Z is ordinarily lumpable (resp., exactly 
lumpable) if and only if the partition HZ = {{xi : i ∈ Z} : Z ∈Z

}
of Vp Q is an FDE (resp., BDE) of p Q .

Proof. FDE case. As observed already by Proposition 1 in [95], for all Z ∈Z and i ∈ Z it holds that

q[i, Z ] = q(i, i) +
∑

j∈Z
j �=i

q(i, j) = −
∑
Z ′∈Z
Z ′ �=Z

q[i, Z ′].

That is, Z is ordinarily lumpable if and only if q[i, Z ′] = q[i′, Z ′] for all Z , Z ′ ∈Z and i, i′ ∈ Z where Z ′ �= Z . In the following, 
we will use this alternative formulation of ordinary lumpability to establish the equivalence with FDE. Since [14] and the 
proof of Theorem 2 ensure that any ordinarily lumpable partition Z induces an FDE HZ , let us assume that HZ is an FDE 
and pick some arbitrary Z , Z ′ ∈ Z and i, i′ ∈ Z with Z ′ �= Z . We have to show that q[i, Z ′] = q[i′, Z ′]. Thanks to Theorem 2, 
we know that �HZ

xi ,xi′ holds true. This, however, implies that the value of∑
j∈Z ′

qi, j · s · (xi + xi′) +
∑
j∈Z ′

qi′, j · (1 − s) · (xi + xi′)

does not depend on the assignment 0 < σ(s) ≤ 1, meaning that q[i, Z ′] = q[i′, Z ′].
BDE case. Assume without loss of generality that Z = {1, . . . , M} with M = |Z| and I = {(I, 1), . . . , (I, |I|)} for any I ∈Z . 

We note that

ẋk = −
∑
j �=k

qk, j · xk +
∑
j �=k

q j,k · x j =
∑

j

q j,k · x j,

which yields, for any I ∈Z and 1 ≤ l ≤ |I|,

ẋI,l =
∑
J∈Z

| J |∑
k=1

q( J ,k),(I,l) · x J ,k =
∑
J∈Z

( | J |∑
k=1

q( J ,k),(I,l)

)
· x J ,1 =: ℘I,l

in the case of 
∧

J∈Z (x J ,1 = . . . = x J ,| J |). Since HZ is a BDE and the real polynomials ℘I,l and ℘I,l′ , where I ∈ Z and 
1 ≤ l, l′ ≤ |I|, coincide if and only if they have the same coefficients, we infer that

| J |∑
k=1

q( J ,k),(I,l) =
| J |∑

k=1

q( J ,k),(I,l′)

for all J ∈Z , thus closing the proof. �
This result explains why differential equivalences can be seen as a somewhat natural generalization of more traditional 

notions of equivalence for discrete-state stochastic systems. In principle, the coarsest lumpable partition of a CTMC could 
be computed using the partition refinement algorithm in Section 3.2. However, in practice, one would use the efficient 
algorithms specialized for CTMCs, which run in polynomial time and space [43]. Still, an SMT-based approach to computing 
CTMC lumpability can be useful to handle uncertainty in rate values, by treating them symbolically (e.g., as suggested in [42]
for PRISM [68]).

As a side product, we remark that Theorem 7 provides a characterization of ordinary and exact lumpability by means of 
real calculus, based on the Kolmogorov ODEs, instead of the classical argument [14] that combines the well-known concept 
of uniformization (e.g., [86]) with the characterization of lumpability for discrete time Markov chains [65].
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4.2. Chemical reaction networks

A CRN is a set of rules (reactions) describing interactions between species. For instance, the reaction A + B α−→ 2C states 
that one element (e.g., molecule) of species A interacts with one element of species B to form two elements of species C . 
The label α decorates the reaction with information about the speed at which the reaction occurs; its signature depends on 
the chosen kinetics.

Formally, let S be a finite set of species. Either side of a reaction is a multiset of S , i.e., a function in N S
0 associating each 

species with its multiplicity (the stoichiometry) as a reactant or product. The stoichiometry of a species A in multiset ρ is 
denoted by ρA . A reaction r over S is a triple (ρ, π, α) ∈ R S ⊆N S

0 ×N S
0 ×L, where L is the label set, represented usually 

with ρ α−→ π .

Mass-action CRNs We now give the semantics of CRNs according to standard mass action kinetics. In this case the labels 
are rates, i.e., positive real numbers; the speed of the reaction is proportional by such rates to the product of the amounts 
of the reactant species.

Definition 12. A mass-action CRN is a pair (S, R S) where R S is a finite set of reactions over S, with R S ⊆N S
0 ×N S

0 ×Q>0 .

For mass-action reactions, set φ(A, ρ α−→ π) := α(πA − ρA).

Definition 13. The IDOL program pS of a mass-action CRN (S, R) is

ẋA = f A :=
∑

ρ
α−→π∈R S

φ(A,ρ
α−→ π)

∏
B∈S

xρB
B , for all A ∈ S.

Hill CRNs We discuss the semantics of CRNs according to the Hill kinetics (e.g., [97]) in the case of catalytic reactions, i.e., 
reactions which are in the form B + C

l−→ D + C with B �= D . Here, C plays the role of a catalyst, a species promoting the 
reaction but which is not affected by it. Species B is the substrate that is modified, becoming D , when the reaction occurs. 
Each reaction is labeled with a triple (β1, β2, ν) ∈Q3

>0.

Definition 14. A Hill CRN is a pair (S, R S ) where R S is a finite set of catalytic reactions with R S ⊆N S
0 ×N S

0 ×Q3
>0 .

Definition 15. The IDOL program pS of a Hill CRN is

ẋA = hA :=
∑

(ρ
(β1,β2,ν)−−−−−→π)∈R S

ρ=B+C,π=D+C

(πA − ρA)
β1xν

B

β2 + xν
B

, for all A ∈ S.

In both semantics, reasonable contexts for CRNs are such that σ̂ (xA) ≥ 0 for all A ∈ S , since the IDOL variables represent 
concentrations of species, i.e., molecular counts divided by the volume of the environment where the reactions take place.

4.2.1. CRN emulation
Emulation is a recently developed notion of comparison between mass-action CRNs [21]. The definition is presented 

below, slightly simplified from [21] and directly stated in IDOL terms.

Definition 16. Let (S, R S) and ( S̃, R̃ S̃ ) denote two mass-action CRNs, with vector fields denoted by � f �
pS
c and � f̃ �

pS̃
c̃ and contexts 

denoted by c and c̃, respectively. A species morphism from (S, R S ) to ( S̃, R̃ S̃ ) is a function μS : S → S̃ . It is an emulation when 
�f�

pS
c (σ̃ ◦ μS) =

(
�f̃�

pS̃
c̃ (σ̃ )

) ◦ μS for all σ̃ ∈R S̃ .

The emulation condition, stated in terms of function composition, can be checked syntactically on the CRN structure by 
using the notions of reactant morphism and stoichiomorphism presented in [21]. Here we formally relate emulation to BDE.

Proposition 2. If μS is an emulation from (S, R S) to ( S̃, ̃R S̃ ) then:

(i)
{
μ−1

S ( Ã) : Ã ∈ S̃
}

is a BDE partition of (S, R S).

(ii) Assume S ∩ S̃ = ∅. Then, 
{
μ−1

S ( Ã) ∪ { Ã} : Ã ∈ S̃
}

is a BDE partition of the CRN (S ∪ S̃, R S ∪ R̃ S̃ ).
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We observe that with i) BDE allows to relate species within the same CRN. By ii), we note that emulation relates species 
essentially like BDE: whenever all species are initialized with the same conditions as the target species to which they are 
mapped, then such species have the same ODE traces. We note that the assumption on disjoint sets of species in ii) is 
without loss of generality since it is always possible to rename species of one CRN with fresh names.

Example 1. The following two mass-action CRNs describe the behavior of AM, a basic biological switch (left) and MI, a 
mutual inhibition mechanism (right) [21]:

X0 + X2
α1−→ X2 + X1

X1 + X2
α2−→ X2 + X2

X2 + X0
α3−→ X0 + X1

X1 + X0
α4−→ X0 + X0

Y0 + Z0
α1−→ Z0 + Y1

Y1 + Z0
α2−→ Z0 + Y2

Y2 + Y0
α3−→ Y0 + Y1

Y1 + Y0
α4−→ Y0 + Y0

Z2 + Z0
α1−→ Z0 + Z1

Z1 + Z0
α2−→ Z0 + Z0

Z0 + Y0
α3−→ Y0 + Z1

Z1 + Y0
α4−→ Y0 + Z2

The following species morphism can be shown to be an emulation:

μS(Y0) = X0, μS(Y1) = X1, μS(Y2) = X2,μS(Z0) = X2, μS(Z1) = x1, μS(Z2) = X0

Since emulation is a particular BDE partition, with BDE it is possible to automatically check whether such correspondence 
of traces carries over to non-mass-action kinetics. In [26,29,88] it is shown how BDE can be used within an algorithm for 
computing all [26,29] or a subset [88] of emulations between two mass-action CRNs.

The possibility of reasoning using different hypotheses for the reaction kinetics is of biological relevance because in 
different situations one may find mass-action mechanisms (e.g., phosphotransfers) or Hill-type mechanisms (e.g., enzymes). 
For instance, much of the utility of Hill kinetics is owed to supporting non-integer exponents. Famously, this ranges in 
2.3-3.0 for hemoglobin. Furthermore, biologists often consider exponents less than 1 in order to describe “anticooperative” 
behavior [74]. Any rational exponent can be expressed in IDOL.

In Example 1 it is possible to show that replacing equal mass-action rates with equal (and arbitrary) Hill triples, a BDE 
partition that is related to an emulation in the sense of item ii) of Proposition 2 is still BDE for the resulting Hill CRN. 
This suggests a structural relationship between CRNs with different biological functionality, which is insensitive (to some 
extent) to underlying kinetics that is considered. Indeed, through BDE it is possible to show that all of the thirteen species 
morphisms found in [21] do enjoy this property. This is particularly interesting because, at the same time, Hill kinetics can 
never be exactly matched by mass-action kinetics, and vice versa. (This holds because the drift for Hill kinetics has partial 
derivatives of arbitrary high order that are not identical to zero, whereas the drift for mass-action kinetics does not.)

4.2.2. Bisimulations and equivalences for CRNs
Forward and backward bisimulations for CRNs have been originally introduced in [23], together with polynomial time 

and space algorithms for computing the largest bisimulations. These are equivalence relations over species for elementary
mass-action reactions, where at most two reactants (possibly of the same species) can appear in the left hand side. A more 
efficient, but still polynomial in time and space, partition-refinement algorithm has been provided in [25] to compute the 
largest bisimulations.

These notions have been recently generalized in [27] to forward and backward equivalence for reaction networks, given 
next.

Definition 17. A (mass-action) reaction network (RN) is a pair (S, R S) where R S is a finite set of reactions over S, with R S ⊆ N S
0 ×

N S
0 ×Q. The IDOL program pS of an RN (S, R) is given by

ẋA = f A :=
∑

ρ
α−→π∈R S

φ(A,ρ
α−→ π)

∏
B∈S

xρB
B , for all A ∈ S.

RNs extend elementary CRNs by allowing for negative rates and an arbitrary multiset of reactants, as opposed to strictly 
positive rates and elementary reactions. Notably, this allows for any polynomial ODE system to be encoded into an RN [27]. 
The largest forward and backward equivalences of an RN can be computed by an algorithm which extends the one from [25], 
whose time and space complexity is polynomial in the number of ODE variables and monomials [27]. At the same time, 
forward and backward equivalence characterize FDE and BDE, respectively, provided that FDE and BDE are restricted to 
polynomial ODE systems.

In this section we compare the performance and generality of forward and backward equivalence with FDE and BDE, 
showing that:

• Forward and backward equivalence should be used when dealing with polynomial ODE systems. This is due to perfor-
mance reasons;
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Table 1
FDE coincides with forward equivalence (FE) for polynomial 
ODEs, with higher computational cost.

Original model Reduction

Model |R| |S| FE (s) FDE (s) Size

M1 [44,84] 8620 745 2.86E–1 7.85E+3 105
M2 [44,84] 3680 354 7.70E–2 3.22E+3 105
M3 [1] 4944 411 6.61E–2 6.46E+2 47
M4 [8] 3447 348 4.00E–2 5.22E+3 215

• In general, FDE and BDE should be preferred when dealing with non-polynomial ODE systems. Indeed, despite certain 
non-polynomial ODE systems can be transformed into polynomial ones using transformation techniques like [53], this 
polynomization might break equivalences present in the original system.

Forward equivalence (FE) Forward equivalence depends on the computation of the following quantities from the RN syntax.

Definition 18. Let (S, R S) be an RN, A ∈ S, Z ⊆ S, and ρ be a multiset of species in S. The net instantaneous rate of A, the
cumulative net instantaneous rate of Z , and the ρ-forward rate of A, are defined respectively as

φ(ρ, A) :=
∑

(ρ
α−→π)∈R S

(πA − ρA) · α, φ(ρ, Z) :=
∑
A′∈Z

φ(ρ, A′), fr(A,ρ, Z) := φ(A + ρ, Z)

[A + ρ]!

Where the operator [·]! denotes the multinomial coefficient induced by a multiset of species, which for S = {A1, A2, ..., An} is defined 
as:

[ρ]! :=
( ∑

A∈S ρA

ρA1 ,ρA2 , . . . , ρAn

)
.

Definition 19. Let (S, R S) be an RN, R an equivalence relation over S and Z = S/R. Then, R is a forward equivalence if for all 
(A, A′) ∈R, all multisets of species ρ , and all blocks Z ∈Z it holds that

fr[A,ρ, Z ] = fr[A′,ρ, Z ]. (4)

Proposition 3 (Forward equivalence corresponds to FDE for polynomial ODEs). Let (S, R S) be an RN and R be an equivalence relation 
over S. Then, the IDOL program p underlying (S, R S) is such that Vp/

{
(xA, xA′ ) : (A, A′) ∈ R

}
is an FDE partition if and only if R is 

a forward equivalence.

We now show that FDE and FE coincide for biochemical models from the literature modelled as mass-action CRNs, but 
with computation times separated by several orders of magnitude. For this experimental study, we used our tool ERODE [28], 
which provides full tool support for: (i) IDOL minimization up to FDE and BDE, and (ii) RNs minimization up to forward 
and backward equivalence. Our tool is available at http://sysma .imtlucca .it /tools /erode, while http://sysma .imtlucca .it /tools /
erode /comparison -syntactic -symbolic provides information on how to replicate our tests.

The results are presented in Table 1. Alongside the model identifier we show the reference from which the CRN was 
taken; headers |R| and |S| give the number of reactions and species, respectively, of the original CRN. Headers FE (s) and 
FDE (s) give the time in seconds to compute the largest equivalences using the corresponding algorithms. Measurements 
were taken on a 2.6 GHz Intel Core i5 with 4 GB of RAM.

The runtime comparisons show that FDE is computationally more demanding than forward equivalence. The reason is 
that the computation of R at each iteration of Algorithm 2 requires in the worst case to establish the validity of �H

xi ,x j
for 

each pair of IDOL variables xi , x j belonging to the same block. Furthermore, each check is performed symbolically using 
the SMT solver, while the partition refinement algorithm of [23] splits candidate partitions using Definition 18. However we 
stress that these tests are “unfair” to our differential equivalences because the comparison is with a specialized partition 
refinement algorithm which iterates using concrete values (that can be computed syntactically).

Backward equivalence (BE) On the domain of RNs, i.e. of polynomial ODEs, BDE corresponds to backward equivalence. Given 
that backward equivalence is defined similarly to forward equivalence we avoid recalling it.

Proposition 4 (Backward equivalence corresponds to BDE for polynomial ODEs). Let (S, R S) be an RN and R be an equivalence 
relation over S. Then, the IDOL program p underlying (S, R S) is such that Vp/

{
(xA, xA′ ) : (A, A′) ∈ R

}
is a BDE partition if and only 

if R is a backward equivalence.

http://sysma.imtlucca.it/tools/erode
http://sysma.imtlucca.it/tools/erode/comparison-syntactic-symbolic
http://sysma.imtlucca.it/tools/erode/comparison-syntactic-symbolic
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Table 2
BDE coincides with backward equivalence (BE) for polynomial ODEs, 
with higher computational cost.

Original model Reduction

Model |R| |S| BE (s) BDE (s) |S|
M5 [84] 786432 65538 5.59E+0 1.01E+3 167
M6 [84] 172032 16386 6.18E–1 3.01E+2 122
M7 [84] 48 18 5.00E–4 6.00E–2 12
M8 [87] 194054 14531 9.42E–1 3.45E+3 6634
M9 [44,84] 187468 10734 5.39E–1 1.57E+3 5575
M10 [32,33] 5832 730 1.60E–2 3.22E+0 217
M11 [66] 487 85 2.00E–3 2.71E–1 56
M12 [21] 24 18 5.00E–4 5.20E–2 3

In Table 2, we compare BDE and backward equivalence using models from [23]. As expected, the more efficient algorithm 
for computing the largest backward equivalence from [27] outperforms our SMT-based implementation. Nevertheless, it is 
worth noting that BDE was able to reduce rather large models. In the largest benchmark, M5, at each iteration of the parti-
tion refinement algorithm the SMT solver evaluated equivalences involving ca. 786,000 nonlinear monomials and 1,500,000 
linear monomials, from binary and unary reactions, respectively. It is also interesting to note that the formula �H used at 
each iteration to refine the current partition H is much simpler than the ones considered for FDE, as just single drifts are 
compared rather than cumulative ones over blocks. For instance, it can be shown that in model M11 the coarsest FDE and 
BDE partitions coincide, but it took 9.90E+1 s to compute the largest FDE, as opposed to the reported 2.71E−1 s for the 
largest BDE.

On the reduction power of FDE/BDE and FE/BE for non-polynomial ODEs We next argue that FDE and BDE are complementary 
to forward and backward equivalence from [27]. To this end, we show that in general the coarsest FDE or BDE underlying 
an IDOL program cannot be obtained by [27] even if one combines it with the technique from [53] which allows one to 
transform a (sufficiently smooth) non-polynomial ODE system into a polynomial one.

For the case of FDE, let us consider the program

ẋ1 = − 1

x1 + x2
ẋ2 = x1 + x2 (5)

whose domain is the set of positive real numbers and which enjoys the FDE partition {{x1, x2}} because y := x1 + x2 yields 
ẏ = −1/y + y. According to [53], the polynomial transformation of (5) is given by

ẋ1 = −x3 ẋ2 = x1 + x2 ẋ3 = x3
3 − x2

3x1 − x2
3x2 (6)

because the ODE of the auxiliary variable x3 := 1/(x1 + x2) is

ẋ3 = − 1

(x1 + x2)2
(ẋ1 + ẋ2) = −x2

3(−x3 + x1 + x2)

It can be shown that the solutions of (5) and (6) coincide as long as σ̂ (x3) = 1/
(
σ̂ (x1) + σ̂ (x2)

)
. However, while the coarsest 

FDE partition of (6) can be efficiently computed by the polynomial time algorithm from [27], it will be {{x1}, {x2}, {x3}} (and 
not {{x1, x2}, {x3}}) because the original ODE of x1 has been replaced by −x3.

A similar statement can be made for BDE. Indeed, let us consider the program

ẋ1 = x1

x1 + x2
+ x2

x1 + x2
ẋ2 = 1 (7)

whose domain is again the set of positive real numbers. Since x1/(x1 + x2) + x2/(x1 + x2) is equivalent to 1, it obviously 
holds true that {{x1, x2}} is a BDE partition of (7). At the same time, the polynomial transformation of (7) is given by

ẋ1 = x1x3 + x2x3 ẋ2 = 1 ẋ3 = −x3
3x1 − x3

3x2 − x2
3 (8)

because the auxiliary variable x3 := 1/(x1 + x2) yields

ẋ3 = − 1

(x1 + x2)2
(ẋ1 + ẋ2) = −x2

3(x1x3 + x2x3 + 1)

Similarly to the foregoing polynomial transformation, the solution of (8) and (7) coincide when σ̂ (x3) = 1/
(
σ̂ (x1) + σ̂ (x2)

)
, 

while the coarsest BDE partition of (8) is {{x1}, {x2}, {x3}}.
Notwithstanding the fact that the coarsest FDE/BDE partition of the polynomial transformation must be an FDE/BDE of 

the original model, the foregoing examples show that it does not have to be necessarily the coarsest FDE/BDE partition 
of the original model. Intuitively, this may happen whenever the model under study enjoys semantical but not syntactical 
symmetries because the introduction of auxiliary variables may break the symmetries present in the original model (e.g., in 
both examples, f1 and f2 enjoy semantical symmetry but not syntactical symmetry).



150 L. Cardelli et al. / Theoretical Computer Science 777 (2019) 132–154
4.3. Process algebra

Lastly we consider a fragment of Fluid Process Algebra (FPA) presented in [62], which corresponds to the process algebra 
studied in [92]. The grammar of FPA considers parallel composition of sequential processes with synchronization over shared 
actions. Let A denote the set of actions and K the set of constants. Each process P ∈ K is defined as P

def= ∑
i∈I P

(αi, ri).Pi , 
where I P is an index set, αi ∈A, ri ∈Q>0 is a rate, and Pi ∈K.

Using the obvious standard operational semantics for the choice and prefix operator, we let B(P ) be the states of the 
underlying LTS, with transitions denoted by P

(αi ,ri)−−−−→ Pi . Furthermore, we let A(P ) denote the set of actions labeling tran-
sitions from P .

Definition 20. An FPA model M is generated by

M ::= P | M ‖L M , with L ⊆ A and P ∈ K.

We let G(M) be the set of sequential components appearing in M and B(M) for 
⋃

P∈G(M)B(P ). For any two P , Q ∈
G(M), we assume B(P ) ∩B(Q ) = ∅.

We introduce the following elementary concepts that will be needed to define the semantics.

Definition 21. Let Z ⊆K and α ∈A. Then

rα(P ) :=
∑

P
(α,r)−−−→P ′

r and q[P , Z ,α] :=
∑
P ′∈Z

∑
P

(α,r)−−−→P ′

r

Also, we say that an action α is enabled in an FPA model M if for any submodel M1 ‖L M2 of M with α ∈ L there exist P1 ∈ B(M1)

and P2 ∈ B(M2) with rα(P1) > 0 and rα(P2) > 0.

An IDOL variable (hence, an ODE) is associated with each LTS state of every sequential process appearing in an FPA 
model M.

Definition 22. The IDOL program of an FPA model M is given by

ẋP =
∑
α∈A

∑
P ′∈B(M)

xP ′ · q[P ′, {P },α] ·R∗
α(M, P ′)−

∑
α∈A

xP · rα(P ) ·R∗
α(M, P ), for all P ∈ B(M),

where r∗
α(M) is recursively defined as

r∗
α(M1 ‖L M2) :=

{
r∗
α(M1) + r∗

α(M2) ,α /∈ L

min
(
r∗
α(M1), r∗

α(M2)
)

,α ∈ L

r∗
α(P ) :=

∑
P ′∈B(P )

xP ′ · rα(P ′)

R∗
α(M1 ‖L M2, P ) :=

⎧⎪⎨
⎪⎩
R∗

α(Mi, P ) , P ∈ B(Mi) ∧ α /∈ L

R∗
α(Mi, P )

r∗
α(M1‖LM2)

r∗
α(Mi)

, P ∈ B(Mi) ∧ α ∈ L is enabled in Mi

0 , otherwise

R∗
α(P , P ′) :=

{
1 , P ′ ∈ B(P )

0 , otherwise

We refer the reader to the literature (e.g., [92,62]) for a more detailed discussion on the semantics of FPA. Here we 
stress that the crucial definition is r∗

α(M1 ‖L M2) for a synchronization action α ∈ L. Intuitively, it provides a contribution 
to the drift that establishes a threshold-based contention between the capacities (i.e., rates) of the operands, dictated by the 
minimum function.

4.3.1. Differential bisimulation
The first equivalence for FPA that we study is differential bisimulation [62]. It is a relation over the set of constants of 

an FPA model, defined in terms of conditions on the sequential behavior and on the compositional structure of processes. 
The latter is captured by collecting actions which affect the sequential behavior.
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Definition 23. Let M be an FPA model, and P ∈ B(M). Then

D(P ,M) :=
{

L ∪D(P ,Mi) , M = M1‖LM2, P ∈ B(Mi)

∅ , otherwise
I(P ,M) := D(P ,M) ∩A(P )

For any Z ⊆ B(M), we set D(Z , M) = ⋃
P∈ZD(P , M) and I(Z , M) = ⋃

P∈ZI(P , M).

Definition 24. Let M be an FPA model, and P , Q ∈ B(M). Then we write P s.i.=M Q if

(i) A(P ) =A(Q )

(ii) if there exists an M=M1 ‖L M2 within M with P ∈ B(M1), and Q ∈ B(M2) (or vice versa), then I(P , M) = I(Q , M) =
∅.

Definition 25 (Differential bisimulation). Let M be an FPA model, R an equivalence relation over B(M), and Z = B(M)/R. We 
say that R is a differential bisimulation for M if for all (P , P ′) ∈R we have:

(i) q[P , Z , α] = q[P ′, Z , α], for all Z ∈Z and α ∈A
(ii) P

s.i.=M P ′ .

We observe that differential bisimulation can be checked in a non-symbolic fashion. This is because the aggregate rates

q[P , B, α] only depend on the rates that label the prefix operator. The equivalence relation s.i.=M involves parsing the FPA 
model and appropriately collecting the action types that decorate the compositional operator of FPA. It turns out that 
differential bisimulation is a sufficient condition for FDE on the corresponding IDOL program.

Proposition 5. Let M be an FPA model and R a differential bisimulation. Then, the IDOL program p underlying M is such that 
Vp/

{
(xP , xQ ) : (P , Q ) ∈R

}
is an FDE partition.

We discuss why it is not a necessary condition using the example taken from [62].

Example 2. Let MF := P1 ‖{α} Q 1, with P1, Q 1 defined as

P1
def= (β, r).P2 + (β, r).P3 P2

def= (α, s).P1 P3
def= (α, s).P1

Q 1
def= (γ ,2r).Q 2 Q 2

def= (α, s).Q 1

Applying Definition 22, its IDOL program is

ẋP1 = s min(xP2 + xP3 , xQ 2) − 2r xP1 ẋQ 1 = s min(xP2 + xP3 , xQ 2) − 2r xQ 1

ẋP2 = r xP1 − s xP2

min(xP2 + xP3 , xQ 2)

xP2 + xP3

ẋQ 2 = 2r xP1 − s min(xP2 + xP3 , xQ 2)

ẋP3 = r xP1 − s xP3

min(xP2 + xP3 , xQ 2)

xP2 + xP3

(9)

It can be shown that ZF = {{P1}, {P2, P3}, {Q 1}, {Q 2}} is a differential bisimulation, hence the corresponding partition on 
the IDOL variables HF = {{xP1 }, {xP2 , xP3 }, {xQ 1 }, {xQ 2 }} is an FDE. Indeed, summing the variables within each equivalence 
class, we obtain:

ẋP1 = s min(xP2 + xP3 , xQ 2) − 2r xP1 ẋQ 1 = s min(xP2 + xP3 , xQ 2) − 2r xQ 1

ẋP2 + ẋP3 = 2r xP1 − s min(xP2 + xP3 , xQ 2) ẋQ 2 = 2r xP1 − s min(xP2 + xP3 , xQ 2)

The converse, i.e., that an FDE over the IDOL variables implies a differential bisimulation for the corresponding processes, 
does not hold in general. For instance, by changing the definition of P2 of Example 2 with P2

def= (δ, s).P1 we have that RF
is not a differential bisimulation because we obtain q[P2, {P1}, α] = 0 and q[P3, {P1}, α] = s. Instead, HF remains an FDE, 
since the “domain-specific” information about action types is lost in the IDOL program.

As a further example, let us replace P2 with the following definition: P2
def= (α, s).P1 + (δ, s).P3. Again, we have that RF

is not a differential bisimulation, while HF is an FDE. This is because the added δ-transition from P2 to P3 distinguishes P2
and P3 (i.e., q[P2, {P2, P3}, δ] = s and q[P3, {P2, P3}, δ] = 0), but its influence disappears in the lumped ODEs: the negative 
drift term −δ · x2 in ẋP2 cancels out the positive drift term δ · x2 in ẋP3 . The above examples are an instance of the more 
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general observation that transitions internal to an equivalence class do not interfere at the FDE level but may tell apart 
processes according to differential bisimulation. Indeed, it is not difficult to see that for any FPA model M, the trivial 
partition corresponding to {B(M)} is always an FDE. This is, intuitively, a conservation-of-mass property due to the fact 
that processes are not created nor destroyed in FPA, hence all transitions are internal to the trivial partition. This remark 
also stresses the usefulness in having an algorithm that can refine any given initial partition, since computing the largest 
FDE for an FPA model always collapses to an uninteresting reduction.

4.3.2. Label equivalence
Similarly to differential bisimulation, we next provide the notion of label equivalence that has been introduced in [92]

and that describes a sufficient, but not necessary, condition for a partition of FPA constants to be a BDE.

Definition 26 (Label Equivalence). Let M be a FPA model and let P = (P1, . . . , PN ), Pi = (P i
1, . . . , P

i
Ki

), be a tuple partition on 
G(M) = {Q 1, . . . , Q n}, that is, for each P ∈ G(M) there exist unique 1 ≤ i ≤ N and 1 ≤ k ≤ Ki with P = P i

k. Pi and P j are said to 
be label equivalent, written Pi ∼P P j , if Ki = K j and there exist bijections ρ i, j

k : B(P i
k) → B(P j

k), where 1 ≤ k ≤ Ki , such that for all 
α ∈A it holds that rα(P i

k) = rα(P j
k) and

• ∀xQ 1 . . .∀xQ n

(
R∗

α(M, P ) = R∗
α(M,ρk(P ))[. . .]

)
,

• ∀xQ 1 . . .∀xQ n

( ∑
P ′∈G(M)

q[P ′, {P },α]R∗
α(M, P ′) =

∑
P ′∈G(M)

q[P ′, {ρk(P )},α]R∗
α(M, P ′)[. . .]

)
,

• ∀xQ 1 . . .∀xQ n

(
R∗

α(M, P ) = R∗
α(M, P )[. . .]

)
for all P inds(Pl

k) with Pl
k /∈ Pi,P j and

• ∀xQ 1 . . .∀xQ n

(
r∗
α(M) = r∗

α(M)[. . .]
)
,

where [. . .] abbreviates

[xQ /xρk(Q ), xR/xρ−1
k (R)

: Q ∈ B(P i
k), R ∈ B(P j

k),1 ≤ k ≤ K ].

It can be proven that label equivalence is an equivalence relation on the tuple partition P . More importantly, the follow-
ing result from [92] connects label equivalence to the notion of BDE.

Proposition 6. Fix an FPA model M, a tuple partition P of G(M) and let ∼P be a label equivalence on P . In particular, let ρ i, j
k :

B(P i
k) → B(P j

k) denote a set of bijections that relates any two label equivalent tuples Pi, P j ∈ P and that satisfies (ρ i, j
k )−1 = ρ

j,i
k . 

Then, 
{{xP : Q ∈ Z} : Z ∈ B(M)/ ≈ }

is a BDE partition, where Q ≈ Q ′ whenever Q ′ = ρ
i, j
k (Q ) for some i, j and k.

There exist BDE partitions that are not induced by label equivalence. To see this, consider the FPA model M = P1
with P1 = (α, 1).P2, P2 = (α, 2).P3, P3 = (α, 1).P4 and P4 = (α, 2).P1. Then, it can be easily verified that the partition 
{{xP1 , xP3 }, {xP2 , xP4 }} of the underlying IDOL model is BDE. However, it cannot be constructed using label equivalence since 
this notion relates FPA constants of distinct elements of G(M).

5. Conclusion

We have provided a generic framework for reasoning about languages that have ordinary differential equations (ODEs) 
as their quantitative semantics. Three main principles can be borrowed from more traditional domains based on labeled 
transition systems or discrete-state stochastic processes such as Markov chains: program comparison and minimization are 
understood in terms of equivalence relations over the states of a program; partition-refinement algorithms can be used 
to compute the largest equivalences; and SMT can be used for program verification. Yet the technical details involved in 
this transplantation are somewhat intricate: in ODE semantics, the state space is implicitly given as a continuous func-
tion. Therefore, proving programs equivalent involves a universal quantification over an uncountable domain. We developed 
algorithms for our differential equivalences by exploiting the possibility of reasoning over the reals symbolically using SMT.

We have worked on a basic intermediate language for ODEs. Conceptually, it can be seen as the analogous of a “byte-
code” format for higher-level languages, where differential equivalences are compiler-optimization techniques that transform 
the original program while exactly preserving its behavior. Reasoning at such an intermediate level leads to equivalences 
that are more general than analogous notions developed for higher-level languages, because no domain-specific elements 
and issues are involved (such as action types and compositionality in process algebra). This can lead to potentially coarser 
minimizations. However we argue that our contribution can still be useful when the modeler must work with higher-level 
equivalences to account for domain specificity. In this case, establishing a relationship with a differential equivalence may 
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provide a way to automatizing checks. It appears already to be the case for differential bisimulation [62] and label equiva-
lence [92] for FPA, which can be encoded into SMT, being a forward and backward differential equivalence, respectively

There are interesting avenues of future research from this work. The most direct one is that of improving the perfor-
mance and scalability of the presented algorithms. For example, validity checks of different formulae can be performed 
independently, thus allowing to refine more blocks at a time, or to parallelize the refinement of a single block. Also, it is 
natural to relax the assumption of exactness in favor of approximate equivalence relations, similarly to what has been done 
for models with stochastic semantics [80]. First steps in this direction have been recently conducted in [30]. In a similar 
vein, forward differential equivalence could be extended to capture weighted sums. However, since this would require a non-
trivial extension of the partition refinement algorithm, we leave this for future work. At last, the computation of differential 
equivalences via SMT solver opens a number of possibilities for symbolic computation. Our intermediate language could be 
extended with parameter variables in order to find, for instance, equivalences that hold under any possible assignment of 
such variables; or synthesize assignments for which a candidate partition is a differential equivalence. The ability to reason 
symbolically can be particularly useful in domains such as computational biology, where uncertainty on rate parameters is 
a well-known hindrance.
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